The non-host pathogen Botrytis cinerea enhances glucose transport in Pinus pinaster suspension-cultured cells.
نویسندگان
چکیده
Botrytis cinerea is the causal agent of grey mould disease and a non-host necrotrophic pathogen of maritime pine (Pinus pinaster). Recent evidence suggests that pathogen challenge can alter carbon uptake in plant cells; however, little is known on how elicitor-derived signalling pathways control sugar transport activity. P. pinaster suspended cells are able to absorb D-[14C]glucose with high affinity, have an H+-dependent transport system (Km, 0.07 mM; Vmax, 1.5 nmol min(-1) mg(-1) DW), are specific for D-glucose, D-fructose, D-galactose and D-xylose, and are subject to glucose repression. When elicited by B. cinera spores, suspended cells exhibit calcium-dependent biphasic reactive oxygen species (ROS) production, the second burst also being dependent on NADPH oxidase, mitogen-activated protein kinase (MAPK), and de novo transcription and protein synthesis. Challenging suspended cells incubated in sugar-free medium resulted in an up to 3-fold increase in glucose transport capacity over non-elicited cultures 24 h after elicitation, and a 14-fold increase over elicited cells incubated with 2% glucose. Enhanced glucose uptake depended on NADPH oxidase and calcium influx, but not MAPK. In contrast, the increase of glucose transport activity induced by sugar starvation was dependent on the activation of MAPK but not NADPH oxidase. Both responses appeared to be dependent on de novo transcription and protein synthesis.
منابع مشابه
Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity.
Botrytis cinerea is a necrotrophic pathogen that attacks more than 200 plant species. Here, the nonpathogenic mutant A336, obtained via insertional mutagenesis, was characterized. Mutant A336 was nonpathogenic on leaves and fruits, on intact and wounded tissue, while still able to penetrate the host plant. It grew normally in vitro on rich media but its conidiation pattern was altered. The muta...
متن کاملThe Effects of Zataria Multiflora Essential Oil on Some Characteristics of Sultana Table Grapes Contaminated with Botrytis cinerea
The object of this research was to find an alternative to fungicide for the prevention of postharvestfruits. Therefore the effect of Zataria multiflora essential oil on the quality of Sultana grapes followingthe harvest was investigated. The essential oil was extracted by hydro-distillation and analyzed using acombination of GC and GC/MS. The results indicated a high percentage of anti-fungal c...
متن کاملArabidopsis thaliana: a model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea.
One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and straw...
متن کاملMorphological and Molecular Identification of Botrytis Cinerea Causal Agent of Gray Mold in Rose Greenhouses in Centeral Regions of Iran
Botrytis cinerea is an important pathogen that causes diseases in ornamental crops. In presentresearch several greenhouses of roses located in central region of Iran were surveyed toidentify the Botrytis cinerea. A total of 80 isolates were collected from rose greenhouses incentral region of Iran. Morphological identification was based on characters such asconidiophore and conidial length. Acco...
متن کاملThe hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea
BACKGROUND Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of foo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2006